13 research outputs found

    Kudeaketa, Plangintza, Legeria eta Deontologia

    Get PDF
    Duración (en horas): Más de 50 horas Destinatario: EstudianteEn esta asignatura, el alumnado deberá aplicar diferentes conceptos necesarios para gestionar eficientemente la oficina de farmacia. Para ello, trabajará diferentes conceptos relaccionados con el marketing, la contabilidad, el control de stock, la gestión de compras y de ventas, etc. Todo ello, con la finalidad de conseguir la máxima rentabilidad posible en un establecimiento de interés sanitario público y gestión privada como es la oficina de farmacia, respetando siempre las normas y leyes que regulan su funcionamiento. Para el desarrollo de la mayor parte del programa se utilizarán metodologías activas, principalmente Aprendizaje Basado en Problemas (ABP), aunque también se llevarán a cabo otras actividades colaborativas como por ejemplo el aprendizaje a través del Puzzle de Aronson o GPS (Gided Problem Solving) cuyas carcaterísticas diferenciales se irán explicando en el momento de aplicarlas en el aula. Con el ABP lo que se pretende es que el alumnado sea capaz, a través de una situación inicial cercana a lo que le ocurrirá en su futuro profesional, de pensar qué información necesita para poder hacer frente con éxito a ese probelma o situación. Es decir, el alumnado debe identificar las necesidades u objetivos de aprendizaje. Una vez identificados, será necesario un trabajo de búsqueda e interiorización de información, así como de su aplicación a ciertas situaciones de una manera autónoma, aunque siempre guiada por el profesorado, que facilitará el aprendizaje continuado del alumnado. Al contrario que en el desarrollo de la actividad de una manera más tradicional, en esta metodología, el profesorado no explica una teoría que después se ha de aplicar, sino que es el alumnado el que ha de llegar a buscar y comprender la teoría que antes se explicaba en las clases magistrales para poder resolver una situación hasta ese momento desconocida

    Current Insights into 3D Bioprinting: An Advanced Approach for Eye Tissue Regeneration

    Get PDF
    Three-dimensional (3D) printing is a game changer technology that holds great promise for a wide variety of biomedical applications, including ophthalmology. Through this emerging technique, specific eye tissues can be custom-fabricated in a flexible and automated way, incorporating different cell types and biomaterials in precise anatomical 3D geometries. However, and despite the great progress and possibilities generated in recent years, there are still challenges to overcome that jeopardize its clinical application in regular practice. The main goal of this review is to provide an in-depth understanding of the current status and implementation of 3D bioprinting technology in the ophthalmology field in order to manufacture relevant tissues such as cornea, retina and conjunctiva. Special attention is paid to the description of the most commonly employed bioprinting methods, and the most relevant eye tissue engineering studies performed by 3D bioprinting technology at preclinical level. In addition, other relevant issues related to use of 3D bioprinting for ocular drug delivery, as well as both ethical and regulatory aspects, are analyzed. Through this review, we aim to raise awareness among the research community and report recent advances and future directions in order to apply this advanced therapy in the eye tissue regeneration field.This research was fundedby the Basque Country Government (Department of Education, University and Research, Consolidated Groups IT907-16 and grant number PRE_2020_2_0143), and forms part of the Nanogrow project RTC-2017-6696-1. Additional funding was provided by the CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), and initiative of the Carlos III Health Institute (ISCIII) and by the University of the Basque Country (UPV/EHU), post-doctoral grant number ESPDOC19/47). The APC was funded by the Basque Country Government (Department of Education, University and Research, Consolidated Groups IT907-16)

    Characterization and assessment of new fibrillar collagen inks and bioinks for 3D printing and bioprinting

    Get PDF
    Collagen is a cornerstone protein for tissue engineering and 3D bioprinting due to its outstanding biocompatibility, low immunogenicity, and natural abundance in human tissues. Nonetheless, it still poses some important challenges, such as complicated and limited extraction processes, usually accompanied by batchto-batch reproducibility and influence of factors, such as temperature, pH, and ionic strength. In this work, we evaluated the suitability and performance of new, fibrillar type I collagen as standardized and reproducible collagen source for 3D printing and bioprinting. The acidic, native fibrous collagen formulation (5% w/w) performed remarkably during 3D printing, which was possible to print constructs of up to 27 layers without collapsing. On the other hand, the fibrous collagen mass has been modified to provide a fast, reliable, and easily neutralizable process. The neutralization with TRIS-HCl enabled the inclusion of cells without hindering printability. The cell-laden constructs were printed under mild conditions (50–80 kPa, pneumatic 3D printing), providing remarkable cellular viability (>90%) as well as a stable platform for cell growth and proliferation in vitro. Therefore, the native, type I collagen masses characterized in this work offer a reproducible and reliable source of collagen for 3D printing and bioprinting purposes.This research was funded by Viscofan (S.A.) Centro para el Desarrollo Tecnológico Industrial (CDTI) IDI-20210050 and the Basque Country Government/Eusko Jaurlaritza (Department of Education, University and Research, Consolidated Groups IT907-16). Author Sandra Ruiz-Alonso thanks the Basque Country Government for the granted fellowship PRE_2021_2_0153. José M. Rey thanks the funding from the European’s Union Horizon 2020 research and Innovation framework program (Triankle Project; Grant Agreement #952981). BioRender.com has been used as support for some figures assembly

    Three-dimensional printing as a cutting-edge, versatile and personalizable vascular stent manufacturing procedure:Toward tailor-made medical devices

    Get PDF
    Vascular stents (VS) have revolutionized the treatment of cardiovascular diseases, as evidenced by the fact that the implantation of VS in coronary artery disease (CAD) patients has become a routine, easily approachable surgical intervention for the treatment of stenosed blood vessels. Despite the evolution of VS throughout the years, more efficient approaches are still required to address the medical and scientific challenges, especially when it comes to peripheral artery disease (PAD). In this regard, three-dimensional (3D) printing is envisaged as a promising alternative to upgrade VS by optimizing the shape, dimensions and stent backbone (crucial for optimal mechanical properties), making them customizable for each patient and each stenosed lesion. Moreover, the combination of 3D printing with other methods could also upgrade the final device. This review focuses on the most recent studies using 3D printing techniques to produce VS, both by itself and in combination with other techniques. The final aim is to provide an overview of the possibilities and limitations of 3D printing in the manufacturing of VS. Furthermore, the current situation of CAD and PAD pathologies is also addressed, thus highlighting the main weaknesses of the already existing VS and identifying research gaps, possible market niches and future directions.This work was funded by the Basque Country Government/Eusko Jaurlaritza (Department of Education, University and Research, Consolidated Groups IT448- 22) . Sandra Ruiz-Alonso and Fouad Al -Hakim thank the Basque Country Government for the granted fellowships PRE_2021_2_0153 and PRE_2021_2_0181, respectively. Denis Scaini gratefully acknowledges support from IKERBASQUE, the Basque Foundation of Science

    Nanoteknologiaren aplikazioak garu-minbizian

    Get PDF
    Nanoterapiak aukera berri asko ireki ditu garun minbizien tratamendu eta diagnostikoan. Nanogarraiatzaileen erabilerak, tumore ingurura molekula konplexuen zuzentzea eta sistemikoki administratutako farmakoen iragana muga hematoentzefalikotik zehar baimentzen du. Kapsularatzen badira, farmakoek batez besteko bizitza luzeagoa dute organismoan, eta gainera efektu kaltegarriak jaitsi egiten dira. Nanogarraiatzaile hauen erabilgarritasuna dela eta, tumoreen aurka zuzendutako askapensistemak garatu dira, eta horre la terapia genikoan, antigiogenikoan eta termoterapian erab iltzen hasi dira. Lan honetan, nanoteknologiaren azken ikerketak, aplikazioak eta erronkak garun minbizian azalduko ditugu

    3D Printed Porous Polyamide Macrocapsule Combined with Alginate Microcapsules for Safer Cell-Based Therapies

    Get PDF
    Cell microencapsulation is an attractive strategy for cell-based therapies that allows the implantation of genetically engineered cells and the continuous delivery of de novo produced therapeutic products. However, the establishment of a way to retrieve the implanted encapsulated cells in case the treatment needs to be halted or when cells need to be renewed is still a big challenge. The combination of micro and macroencapsulation approaches could provide the requirements to achieve a proper immunoisolation, while maintaining the cells localized into the body. We present the development and characterization of a porous implantable macrocapsule device for the loading of microencapsulated cells. The device was fabricated in polyamide by selective laser sintering (SLS), with controlled porosity defined by the design and the sintering conditions. Two types of microencapsulated cells were tested in order to evaluate the suitability of this device; erythropoietin (EPO) producing C2C12 myoblasts and Vascular Endothelial Growth Factor (VEGF) producing BHK fibroblasts. Results showed that, even if the metabolic activity of these cells decreased over time, the levels of therapeutic protein that were produced and, importantly, released to the media were stable.This work was done under the BIOPAN project (CIBER-BBN). Authors wish to thank the intellectual and technical assistance from the ICTS "NANBIOSIS", more specifically by the Drug Formulation Unit (U10) and the Micro-Nano Technology Unit (U8) of the CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBERBBN). Also, they thank the support to research on cell microencapsulation from the University of the Basque Country UPV/EHU (EHUA 16/06) and the Basque Country Government (Grupos Consolidados, No ref: IT907-16). The authors acknowledge the financial support from the Ministerio de Economia y Competitividad (MINECO) (Spain) through Ramon y Cajal program (RYC-2013-14479). This work has made use of the Spanish ICTS Network MICRONANOFABS partially supported by MINECO

    Kudeaketa, Plangintza, Legeria eta Deontologia

    Get PDF
    Duración (en horas): Más de 50 horas Destinatario: EstudianteEn esta asignatura, el alumnado deberá aplicar diferentes conceptos necesarios para gestionar eficientemente la oficina de farmacia. Para ello, trabajará diferentes conceptos relaccionados con el marketing, la contabilidad, el control de stock, la gestión de compras y de ventas, etc. Todo ello, con la finalidad de conseguir la máxima rentabilidad posible en un establecimiento de interés sanitario público y gestión privada como es la oficina de farmacia, respetando siempre las normas y leyes que regulan su funcionamiento. Para el desarrollo de la mayor parte del programa se utilizarán metodologías activas, principalmente Aprendizaje Basado en Problemas (ABP), aunque también se llevarán a cabo otras actividades colaborativas como por ejemplo el aprendizaje a través del Puzzle de Aronson o GPS (Gided Problem Solving) cuyas carcaterísticas diferenciales se irán explicando en el momento de aplicarlas en el aula. Con el ABP lo que se pretende es que el alumnado sea capaz, a través de una situación inicial cercana a lo que le ocurrirá en su futuro profesional, de pensar qué información necesita para poder hacer frente con éxito a ese probelma o situación. Es decir, el alumnado debe identificar las necesidades u objetivos de aprendizaje. Una vez identificados, será necesario un trabajo de búsqueda e interiorización de información, así como de su aplicación a ciertas situaciones de una manera autónoma, aunque siempre guiada por el profesorado, que facilitará el aprendizaje continuado del alumnado. Al contrario que en el desarrollo de la actividad de una manera más tradicional, en esta metodología, el profesorado no explica una teoría que después se ha de aplicar, sino que es el alumnado el que ha de llegar a buscar y comprender la teoría que antes se explicaba en las clases magistrales para poder resolver una situación hasta ese momento desconocida

    Nanoteknologiaren aplikazioak garu-minbizian

    Get PDF
    Nanoterapiak aukera berri asko ireki ditu garun minbizien tratamendu eta diagnostikoan. Nanogarraiatzaileen erabilerak, tumore ingurura molekula konplexuen zuzentzea eta sistemikoki administratutako farmakoen iragana muga hematoentzefalikotik zehar baimentzen du. Kapsularatzen badira, farmakoek batez besteko bizitza luzeagoa dute organismoan, eta gainera efektu kaltegarriak jaitsi egiten dira. Nanogarraiatzaile hauen erabilgarritasuna dela eta, tumoreen aurka zuzendutako askapensistemak garatu dira, eta horre la terapia genikoan, antigiogenikoan eta termoterapian erab iltzen hasi dira. Lan honetan, nanoteknologiaren azken ikerketak, aplikazioak eta erronkak garun minbizian azalduko ditugu

    Review of Advanced Hydrogel-Based Cell Encapsulation Systems for Insulin Delivery in Type 1 Diabetes Mellitus

    Get PDF
    Type 1 Diabetes Mellitus (T1DM) is characterized by the autoimmune destruction of beta-cells in the pancreatic islets. In this regard, islet transplantation aims for the replacement of the damaged beta-cells through minimally invasive surgical procedures, thereby being the most suitable strategy to cure T1DM. Unfortunately, this procedure still has limitations for its widespread clinical application, including the need for long-term immunosuppression, the lack of pancreas donors and the loss of a large percentage of islets after transplantation. To overcome the aforementioned issues, islets can be encapsulated within hydrogel-like biomaterials to diminish the loss of islets, to protect the islets resulting in a reduction or elimination of immunosuppression and to enable the use of other insulin-producing cell sources. This review aims to provide an update on the different hydrogel-based encapsulation strategies of insulin-producing cells, highlighting the advantages and drawbacks for a successful clinical application.Authors thank the support to research on cell microencapsulation from the University of the Basque Country UPV/EHU (EHUa16/06 to L.SB) and the Basque Country Government (Grupos Consolidados, ref. no.: IT907-16 to J.L. P). Authors also thank ICTS "NANBIOSIS", specifically by the Drug Formulation Unit (U10) of the CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) at the University of Basque Country UPV/EHU in Vitoria-Gasteiz
    corecore